
i'.•«?*=-'

CO € € ^C G£ -^
c € c « ^, cc e

(I 0 T 8 Y 8

MTR-1829

'SSK-

c c
* c

I I

finitestele syntax
directed braille tpanslaticrt

byj.k.miilen July 1970 the MITRE corporation

MITRE
ixnixa

BEDFORD. MASSACHUSETTS

MITRE Technical Report

MTR- 1829
No. Vo'. Series Rev. Supp. Cor

Subject: Finite-State Syntax-Directed
Braille Translation

Author: Dr. J. K. Millen

Dept.: D-73

Date: 2 July 1970

Contract No . SR 21697

Sensory Aids Evaluation and Development
Contract Sponsor: Centerj Massachusetts Institute of

Technology
Project: 1248

Issued at: Bedford, Massachusetts

9/ / /Ls Jt
Department Approval: ^fy, <•••' 1

MITRE Project Approval:

Page 1 of J4.8 pa§es

L. Laffery,./^
r^ A

R. A. J. Gildea

This document has been approved for public release.

iii

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS

SECTION I INTRODUCTION

SECTION II FINITE-STATE SYNTAX-DIRECTED
BRAILLE TRANSLATION

A. Basic Concepts

1. Right-Linear Context-Free
Grammars

2. Transduction Grammars
3. Finite-State Machines

B. Theoretical Characterization of
DOTSYS II

1. The Transduction Grammar
2. Other Kinds of Translation
3. The Tables in DOTSYS II
4. Possible Improvement
5. Suitability of a Finite-State

Machine for Braille Translation

SECTION III THE TRANSLATION ALGORITHM

A. Introduction

1. Basic Approach
2. Conditions for Contraction
3. The Three Mechanisms for

Implementing Braille Rules
4. Summary

B. Finite-State Logic

1. The State Vector
2. Input Classes
3. The Transition Table
4. The Decision Table

Vll

IX

4

4

4

5

6

8

9

9

9

11

12

12

12

14

14

15

17

17

17

18

19

APPENDIX

REFERENCES

ATTACHMENT

DISTRIBUTION LIST

TABLE OF CONTENTS (Concluded)

C. The Contraction Table

1. Introduction
2. Contraction Table Entry Format

a. The STRING Field
b. The RIGHT-CONTEXT Field
c. The INPUT-CLASS Field
d. The SHIFT Field
e. The SIGNS Field

3. The Ordering of the Contraction
Table

4. The Contraction Table Search

D. The Alphabet Table

E. The Right-Context Table

F. Output

1. Intermediate Output
2. Kinds of Output Implemented
3. The Numerical Codes for the

Braille Signs

4. The Sign Table

STATE VARIABLES AND INPUT CLASSES

viii

Wm^W^m^^Mm^^m^m^m^i

Page

21

21

21

22

22

23

23

24

24

25

26

27

28

28

29

32

32

35

36

38

41

LIST OF ILLUSTRATIONS

Figure Number

1

2

3

4

5

6

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Three productions
A transduction grammar

• nor,npl derivationsTranslation usxng parallel
Transition graph stringSteps in the translation of an input string
Production with its transduction element, for
English-to-braille translation
Recognition of 'herence , herer , ner ,
and 'here' „ith single-letter inputs (part
of a transition graph)
The ten-character *»«« translating TIME
Stents or Z "Sr after translating tbe
r^icfr'coSfoata «e» and its correspond,
ttorage layout, .itb sa^le con ent
The transitio,.tab , «xtb ypxc u§_
uffpof of input ciasfaet. un"a secified'by transition table .ntr«.
The decision table, with typical entries
Contraction table entry or EA
Buffer contents which (a) do, W
match the contraction table entry for

CortractiFon8traeble15entries for AND FOR and
FOR THE ,Buffer contents for text example
Buffer contents after shifting
TIME in ^e.b"£f" in the alphabet table
Two successive entries m ;. t
Logic table displays and proof output
The standard numbering of the dots in
braille cell (b) THE
Sign table entries for (a) A and W

IX

Page

4

5

6

7

8

10

13

13

13

1.6

18

18

19

22

23

24

24

24

26

27

30-31

32

33

.« •„ ^wum^jm 1,1,.wwymmmw^^

DOTSYS II

FINITE-STATE SYNTAX-DIRECTED BRAILLE TRANSLATION

I. INTRODUCTION

This document describes the structure of DOTSYS II, a COBOL
program to translate natural language text into braille. No toow
ledee of DOTSYS II or of COBOL is presupposed, but some acquaintance
with computer programming and the problems of braille translation is
expected.

In its present form, DOTSYS II is aCOBOL source program which
may be run on any computer having aCOBOL compiler and amodest
amount of core storage. For input, it requires the initial values
of some tables, and some text to be translated. Its output is
essentially the sequence of braille signs equivalent to the input
text, encoded in aform specified as part of the tabular input. An
output routine and input tables have been provided which equip
DOTSYS II to translate English text into Grade 2braille, and provide
output which can be embossed on a modified high-speed line printer on
which the paper is backed with a resilient material.

With modified tables,* DOTSYS II would be capable of processing
different kinds of text, such as poetry, languages other than English,
and text containing mathematical or other technical notation, or
alternate symbols for paragraph starts and other format controls.

At this writing, DOTSYS II has been run on an IBM 360/50 and an
IBM 360/65, translating text at the rate of about 1300 words per
minute on the former and 3300 words per minute on the latter, ine
storage space required is about 9000 8-bit bytes for the program
itself plus 8000 to 12,000 bytes for tables.

DOTSYS II owes the fundamentals of its translation algorithm
both to previous work in the field of braille translation by computer
and to elementary concepts in the theory of automata, logic design,
and formal languages.

The use of a dictionary of braille contractions, and a buffer or
filter to allow the inspection of several characters at a time, were

•instructions for modifying the tabular input for DOTSYS II a- given
in MTR-1853, "DOTSYS II: User's Guide and Transfer and Maintenance
Manual."

1

proposed by J. P. Cleave (1 ?) * rrV,„ i

implementing certain rules'througn^S'st^t%5«cto^« **
the basic set of contractions. entries in the dictionary besides

_ The Schack Translation Subroutine (3) placed H^f
into classes, and indicated for oaJu Z Placed dictionary entries
that is, those classes of entry which if^' "8 ^^ P^^ents-

the current entry immediately a^fterward'" "^ ^^ the USe

assignttd^Sl ctr^s^thefST^ *' """ C4)numbered classes. To provide a It \ ? dictionary entries, into
affect the translation 0' s n " f°J 1ft^ paSt characters
mation code, which retained inform r ' ^ * cumulative infor-
characters translated bit about ^ ** JUSt aWt the lastpertinent. Prefix-stem Lt -^ previous characters as were
alist of prefixed £".m^gin"a^ ^f^ * ^
was made between a prefix and a 17k • J * dlvlsion °* a word
and another prefix. Contract!onf81™1118 °r betWeen a Pref^Auseful by-product o ° l^ "°! ^e.— such divisions,
was the ability to hyphenate! identifying major word divisions

tr-SoJis^^^tssr wr usiin dotsys' thetion of the late .Tohn . e t^f?? r'^ "^ the dir—braille translation of the concent of ! lr\troducf the use in
linking the translation utd n t ^ (5'6)' *^^ °f
routines in such away as to SiS.^S'bSS'itS^I' ^T^
their intercommunication. Co-routinP uL ? storage required for
-natron process itself an/tStocetS noVhe ^sel £

techniques are actually pieces ofTonifL T """^W.v.loped
together within ac„„Vfra„L rk in Jn el^SSv '•"f " "°tk
Furthermore, the close f.mT10,n u essentially simple way.
and antoa,ata theory petlts in thia^"" ^"—^""^ transduction
(finite-state) canine "he'ory^e'th" ^™^M°" "' SeqUe"tial

direct%7tra„^"ao„hLa^^ttaPtr: 1-"» ""* °f ^^armite state machines are highlighted,

The numbers in parenthesis refer to the Hi,. u ,
the list of References. like-numbered citations in

1

w

co
ro

o

r
t

c
o

05
O

r
t

a
P

-
(D

O p
T

3
-

l-
t IT
S

n
en

T
3

P)
rr

P
p

.
co

o
t-

1
P

!" r
r

O
P

-
h

ti
O P

r
r ry

pj
(D

H O
P

n
o

o
.

p
p

O
r
r

fD
M

y
^

p P
-

C
P

P
O

Q
ft

) P
r
r

en
p

-
s:

en
c
r

C
(D

i_
i.

p
.

fD
P

o
P

r
r

p
.

-
P 0
0

ft
)

o P C
O

p
-

C
O

W p
X

)

ro
C

to
C

O
to

fD
P

c
o

r
r

fD
O

P
-

H
i

P
-

r
t

p
P

"
fD

C
O

ro
co

o
p

-
r
r

X
P

-

C
O ft
)

&
p

P
o

ro
r
r

co
C

rr
ft

)
P

-
i-

t
o p

ft
l

CO

13
1

*!
H

P
-

O
P

1
ft

)
H

n P4
cr

*
ft

)
fD

c
o

H

r
r

ft
)

O
P

-
C

O

c
r

fD

ft
)

h H P
-

< P
-

P
T

J
0

0
H

.
ft

)
ft

l
CO

r
t

fD P
o

i
r
r

ft
)

r
r

P
-

O 0r
t

p
-

fD

H
i

C
o

P
-

d v
!

o H
i

fD X
ft

)
T

3 P
4

H
i

P
-

fD
o

j3
p

.
r
r

O H
i

r
t

=
r

O
(D

i-
(

C
O

c
r

£
L

T
3

c
r

co c
o p
-

n
ro C

O O
P

-
H

i
P o

8.
c

e
n

p
-

h<
P

C
O

O
Q

H
0)

p
-

0)
H

H
i

p
-

I
t

(D
fD

C
O

C
O

M ft
)

T
J

P
'

o p
n

o
o

H
i

P o
I
t

fD
S3

"
T

)
fD

I
t

C
O

l-
t

O
O

H
i

O
Q H

p
-

ro

II. FINITE-STATE SYNTAX-DIRECTED BRAILLE TRANSLATION

A. Basic Concepts

1. Right-Linear Context-Free Grammars

The first basic definition* is that of a right-linear context-
free grammar (8,9). A right-linear context-free grammar is a set of
rules! each of the form A-sB or of the form A- s, called productions,
where s represents astring (or sequence) of symbols called terminals,
and A and B represent symbols belonging to a set of symbols called
non-terminals (one of which, usually S, is designated as a s£art
symbol). No symbol is both a terminal and a non-terminal. The _
modifier "right-linear" means that there is at most one non-terminal
on the right side of the arrow, and it is to the right of the string
of terminals.

Using the notational convention that non-terminals are capital
letters and terminals are words or punctuation, then Figure 1 shows
three productions.

S -»• a rose is A

A -»- a rose is A

A -* a rose,

Figure 1. Three productions

With Sdesignated as the start symbol, the set of the three productions
in Figure 1 is a right-linear context-free grammar. The grammar in
Figure 1 can be used to generate a set of strings by writing down the
start symbol, S, and then interpreting each production as indicating
a possible substitution of the symbols on the right side of the arrow
for the non-terminal on the left side, wherever and whenever it occurs.
Since no terminal symbol can appear on the left side of a production,
no further substitution is permitted in a string of terminals; hence
terminals terminate substitution, thus the name. In particular, the
first production, S- arose is A, indicates that the start symbol
may be replaced by the string "a rose is A". Then, according to the
other two productions, the A may be replaced by either a rose is A
or "a rose ". In the former case, a further substitution may be
made for A and so on. For example, we could generate the string
"a rose is a rose is a rose," with three substitutions, as follows:

Definitions will be given here only informally;
can be found in the references.

\

a rose is A

a rose is a rose is A

a rose is a rose is a rose,

string of terminals.

The same grammar could be used to generate other strings of
terminals--" fact, an infinite number of them. Two examples are
shown below.

a rose is a rose,

a rose is a rose is a rose is a rose,

*- S" "nee llTZ^rr^l^^^^"a grammar is called the language kul ± ..Q,"4^ a context-free

finite-state language.

2. Transduction Grammars

rt"e rer^erSrr^^Lrnr^^reirraiei

^^fin^ifin^ieh^the-new te^nars are uathe^atica!
symbols.

S + a rose is A {99 A}

A -> a rose is A {-1 A}

A + a rose, {< 10°>

Figure 2. A transduction grammar

The above is called a transduction grammar, and the extra right sides
transduction elements. Note that there is no direct correspondence
between the orTgTn!r~terminals and the terminals in the transduction
elements. The kind of translation we shall do is more subtle than
simple word-for-word translation.

To translate the string "a rose is a rose is a rose," we perform
the substitutions which generated it, but using the transduction
elements instead of the old right sides. Figure 3 shows the parallel
between the old and the new derivations.

S

a rose is A

S

99 A

a rose is a rose is A 99 1 A

a rose is a rose is a rose, 99 - 1 < 100

Figure 3. Translation using parallel derivations

In practice, when a translation of astring is to be performed
using a transduction grammar, a derivation of the string is not
given. Consequently, part of the translation job is to find one, or
at least enough information about one to perform the translation.
There is a well-known scheme for finding a derivation of a string
belonging to a finite-state language, by making use of a finite-,
state machine.

3. Finite-State Machines

A fix ite-state machine [10] is a device that changes state only
in response to an input, with both the number of states and the
number of inputs being finite. One example is an electrical light
switch operated by a push-button. Such a switch has two states—
"on" and "off", and one input—a push on the button.

A change of state, or a repetition of the current state,
occurring in response to an input, is called a transition. Given a
right-linear context-free grammar, one can construct (by simulating
with a computer program, say) a finite-state machine whose inputs
are the strings of terminals occurring in productions and whose

pmamaimqasBMBa

possible state changes in response to inputs are determined by the
productions. The states of this machine correspond to the non
terminals of the grammar.

If one is also given a right-linear transduction element with
each production, that is, a transduction grammar, the machine can be
made to produce the terminal strings occurring in the "^^tion
elements as output during a transition. A translation based in this
way on a transduction grammar is called syntax-directed.

Initially, the machine is in the state corresponding to the
start symbol S, and is presented with a string belonging to the
language generated by the grammar from which the machine was con
structed. Thereafter the machine operates as follows.

The machine looks for a production of the form A- sB or A- s
such that the current state of the machine corresponds to A and the
input string (or remainder thereof) begins with s.

If a production of the for A- sB is found, with transduction
element s'B , its response is to produce s' as output, change its
state to B, remove s from the beginning of the input string, and
continue as from the beginning.

If a production of the form A- s is found, with transduction
element s' , its response is to produce s' as output, and stop.

The operation of a finite-state machine can be represented
graphically by joining circles (representing states with arrows
(labelled with inputs, showing transitions). In this '°«text,
outputs are associated with transitions and are shown on .ch arrow
below or after the input, separated from it by a slash (/) Stopping
is indicated by a transition to anew terminal state, drawn witha
aouble circle. The resulting figure is called atransition |r^h*;
atransition graph for the finite-state machine constructed from the
transduction grammar in Figure 2 is shown below in Figure 4

s~\a rose is/-l

(§>-^§p fe>)<Tou >0
Figure 4. Transition Graph

* Transition graphs are more general than -^^^^f3^/^3'
because not all inputs necessarily apply at each state, and ttie>
might be nondeterministic.

Let us trace the operation of the finite-state machine depicted
in Figure 4 as it translates the string "a rose is a rose is a rose
is a rose,". Figure 5 lists the state, input string, production used,
and output at each step.

STATE INPUT STRING

S a rose is a rose is a rose is a rose,

A a rose is a rose is a rose,

A a rose is a rose,

A a rose,

PRODUCTION OUTPUT

S -* a rose is A 99

A -* a rose is A -1

A ~* a rose is A -1

A ""* a rose, <100

Figure 5. Steps in the translation of an input string

Stringing together all of the outputs gives us M99 - 1 - 1 < 100",
the translation of the input string. Note that this could have been
done by tracing out the input string on the transition graph alone,
without reference to the productions.

Theoretical Characterization of DOTSYS II

The Transduction Grammar

Abstractly, DOTSYS II simulates a finite-state machine based on
a transduction grammar whose old terminals are characters occurring
in natural language text and whose new terminals are braille signs.
A typical production, with its transduction element, is shown in
Figure 6.

Figure 6.

• • • •

A -• hered A 1•• • • • A

A production with its transduction

element, for English-to-braille
translation

The transduction grammar used will not be given explicitly
because it is too large and repetitive to be readable in that form;

it is given implicitly, however, in the tables that drive the program.

2. Other Kinds of Translation

It is reasonable to ask if the program could be used with other
transduction grammars to perform other kinds of translation. The
answer is a qualified yes. There are two qualifications: First, the
transduction grammar must be based on a right-linear context-free
grammar, and have right-linear transduction elements; that is, the
translation must be finite-state. Second, the tables might have to
be modified in format to accommodate different kinds of terminals.

On the whole, for purposes other than braille translation, the general
scheme used here is likely to be of more use than this particular
implementation of it.

3. The Tables in DOTSYS II

Several tables contain the information needed to simulate the

finite-state machine. The contraction table, together with the
alphabet table, is a list of the input/output pairs occurring in
transitions. The decision table decides whether a given input/
output pair is associated with a transition from a given current
state. The transition table determines the new state from a given
input and current state. Details of how these tables work are given
in the following chapters. The actual format and use of the tables
are more complicated than this abstract discussion suggests, partly
due to the use of techniques designed to improve the speed of the
translation, and partly due to the provision of variable-shift and
right-context fields in the contraction table entries, giving tremen
dous power to specify translation rules in a way possible, but not
presently practical, with an ordinary transduction grammar. A detailed
description of these fields may be found in the Contraction Table
section.

While a theoretical perspective on the above provision is beyond
the scope of this report, there is an important practical consequence
of it, having to do with an improvement in the program that would be
possible, given greater resources.

4. Possible.Improvement

There is presently an inefficiency in the program, resulting
from the fact that the beginning of the input string must be matched
repeatedly against several similar strings to find the correct transi
tion. For example, the string "here and now" would be matched unsuc
cessfully with "here," "herence," "hered," and others before "here
was found. Thus, the four letters h, e, r, e were compared at least

three extra times. In many text-processing systems*, as well as
theoretical discussions on finite-state machines, a technique of
introducing new states to prevent superfluous comparisons is used.
Each character becomes an input, so that the finite-state machine

goes through four states to recognize the string flhere,f--but never
has to backtrack. Figure 7 shows how such a machine discriminates
among the strings beginning with "here".

Figure 7. Recognition of "herence", "herer", "hered", and "here11
with single-letter inputs (part of a transition graph)

The catch is that one must also assign outputs, reserving them until

each particular string is recognized. This is not so bad in the
example above, but becomes difficult when right context is introduced
(either explicitly, or implicitly with a small shift**), since there
is no backtracking on that either, and it may generate more output.

These remarks are meant only to indicate that there ij^ a problem,
and that it is compounded by introducing variable shift and right
context. Even without the extensions, the kind of operation described
above needs tables more complicated than the present ones, because
they must be decomposed on a letter-by-letter basis. Because of the
requirement that the tabular information is to be changed easily, it
is mandatory that conversion of the tables from an initial simple
form to the required new form be done automatically by the program.
This kind of problem has been solved before, (See 11, 12, 13), but
not in a way that applies to the problem at hand.

An investigation of the extensions, and specification of a single-
letter-input syntax-directed translator in their presence, appears to
be a worthwhile research problem, both from a theoretical and practical
point of view.

* See (11), p. 79.

** Cf. Section III.C.2.d.

10

5. Suitability of a Finite-State Machine for Braille
Translation

Translation of English into braille is an open-ended problem for
which finite-state methods are not the whole answer. An example of a
Braille rule which exceeds finite-state translation capability is the
following:

When in inkprint a number or letter is preceeded or
followed by a symbol or abbreviation for coinage,
weight, measure, or other special sign, including the
individual terms of a sequence, the corresponding
braille symbol or abbreviation, without the period
or plural "s", should always be placed immediately
before the number or letter to which it refers.*

For example, an input of "3 yds." should produce as output the
braille signs for "YD3". Turning "yds." into "YD" is trivial, but
reversing the order is not possible with a finite-state machine. In
order to handle this rule, DOTSYS II must put out 3YD instead, followed
by another symbol which will instruct the output routine, as a special
case, to move the letter signs before the immediately preceding number.

Another rule beyond the capability of a finite-state machine is
this:

There should be no space between the lower-sign
contractions to, into, by_, and the word which
follows, if there is no natural pause between them.

A natural pause occurs between "to," "into," or "by" and the next
word if they are parts of independent grammatical constructions.
Although there are programs which perform syntactic analysis of
English deeply enough to handle this problem, they are relatively
slow, on the order of one word per second. Calling in such a program
for every sentence in which "to," "into," or "by" appears would signi
ficantly reduce the speed of the translation program. Instead, DOTSYb
II invokes the next sentence of the same braille rule:

"If in doubt about the pause, they should be joined."

With the current tables, DOTSYS II always joins "to", "into", or "by"
with the next word.

r (14), p. 30

11

III. THE TRANSLATION ALGORITHM

A. Introduction

1. Basic Approach

The following paragraphs stress the conceptual foundations of
the translation algorithm. The level of detail is gradually deepened
until the names and roles of the most important tables and dynamic
storage areas have surfaced. A mnemonic summary of the chronological
steps in the algorithm is given in Table 1. It may be helpful to refer

to Table 1 again at the end of this introduction.

1. Index alphabet table

2. Search contraction table, decision table,
right-context table

3. Output contraction table or alphabet table,
sign table

4. Shift contraction table

5. Change State transition table

Table 1. Chronological form of the translation algorithm
as a loop of five steps, showing the tables used

DOTSYS II translates the input text from left to right. At a
given moment, ten consecutive characters are inspected. Those ten
characters occupy the buffer, a set of ten storage locations (See
Figure 8.).

12

BUFFERJAK)

...IS THE

i v« •

TIME FOR qLL GOOD MEN TO. ..

has been currently not yet read
translated inspected

Figure 8. The ten-character buffer

If ten or fewer characters beginning at the left end of the

buffer are to be translated as a group in braille, i.e., contracted,
then DOTSYS II puts out the braille sign or signs and shifts the con
tents of the buffer left to move the contracted characters out of the

buffer. The same number of new characters are read into the vacancies

at the right end of the buffer.

In the example shown in Figure 8, the word TIME occurs at the left
end of the buffer. Since TIME can be contracted, DOTSYS II puts out

the two braille signs . .* which are its braille translation and then

shifts the buffer contents left by four characters. As shown in
Figure 9, the first character after TIME, a space, is then the left
most character in the buffer.

.IS THE TIME FOR ALL dpOV MEN TO...

Figure 9. Contents of the buffer after translating TIME

If no character string which can be contracted begins at the
left end of the buffer, DOTSYS II puts out the braille equivalent of
the leftmost character in the buffer and then shifts the buffer con

tents left by one character. In the example shown in Figure 9, DOTSYS
II puts out a space and then shifts the buffer contents left by one
character, resulting in the situation shown in Figure 10.

...IS THE TIME FOR ALL GCOD MEN TO..

Figure 10, Contents of the buffer after translating

the blank after TIME

13

2. Conditions for Contraction

Most of the program is dedicated to determining whether or not
there is a character string beginning at the left end of the buffer
which can be contracted. DOTSYS II uses a table containing all the
character strings for which there are standard braille contractions:
the contraction table. Each entry in the contraction table consists
of a character string, its braille sign or signs, and other informa
tion to be discussed below.

The first step in testing for the possibility of a contraction
is to search the contraction table for a match with the buffer. In
the example shown in Figure 8, there was an entry in the contraction
table whose character string was TIME. Since this matched the first
four characters of the buffer, TIME was a possible contraction.

Finding an entry in the contraction table which matches the
initial characters in the buffer is a necessary condition to contract
those characters, but not a sufficient condition. For example, the
letter group "ING" is contracted when it occurs in the middle or at
the end of a word, such as in LINGER and BEING, but is not con
tracted at the beginning of a word, as in INGRATE. ' (A list of the
letter groups for which there are standard English braille contrac
tions, and the rules which determine under what circumstances each
letter group is to be contracted, are found in English Braille (14).)

3. The Three Mechanisms for Implementing Braille Rules

There are basically three mechanisms in DOTSYS II for implementing
the braille rules:

(a) Contraction T; ble Additions

Some of the rules are implemented merely by additions to the
contraction table. For example, when the contracted letter groups
EA and AR overlap, as in the word NEAR, the AR contraction
is preferred. This rule is implemented by putting the letter group
EAR in the contraction table and specifying its translation to be

the two braille signs for E and AR.

(b) Right Context

Some contractions are made only when the character string to be
contracted is followed immediately by another letter—or, alternatively,
only when followed by a punctuation mark or other non-alphabetic

14

character. Either of these conditions may be indicated by means of a
third part of the contraction table entry: the right-context charac
ter. This character is either blank, L, or P, meaning, respectively:
no condition, follow by a letter, or follow by a character other than
a letter. For example, the contraction table entry with the character
string EA will have a right-context of L, since EA is never contracted
when it occurs at the end of a word, as in SEA, or when followed by a
hyphen or apostrophe; hence, it must be followed by a letter.

The choice and meanings of right-context characters are given in
the right-context table. By changing the entries in this table, new
right-context conditions can be supplied or old ones altered.

(c) Finite-State Memory

DOTSYS II uses a finite-state memory to implement rules involving
characters to the left of, i.e., preceding, the characters currently
under inspection. Unlike the right-context mechanism, which tests
only an immediately adjacent character, the finite-state memory allows
a contraction to be affected by characters which may have occured
remotely (in the past, hence the term "memory"). The finite-state
memory appears in DOTSYS II in the form of a state vector, and it is
used with the help of a transition table and a decision table.

The state vector is a number of consecutive storage locations
called state variables. Each state variable contains the character
Y (for Yes) or N (for No). The occurrence of some characters in the
input text can change specific state variables from N to Y, or vice
versa, as they are shifted out of the buffer. The change, if any,
is specified in the transition table. For example, one of the state
variables is set to Y by any letter, and reset to N by a punctuation
mark other than the apostrophe and hyphen. Thus, if ING is at the
left end of the buffer, the contents of this state variable can then
be used to decide whether that ING occured after the beginning of a
word- yes if Y, no if N. The decision table contains the information
that ING (and other final letter contractions) are to be contracted
if the relevant state variable is Y and not otherwise.

4. Summary

To summarize, DOTSYS II translates input characters from left to
right while passing them leftward through a ten-character buffer. A
character string beginning at the left end of the buffer is contracted
if three conditions are satisfied:

15

(1) it matches an entry in the contraction table;
(2) it has an acceptable right-context character,

if required;

(3) contraction if permitted by the decision table,
as a function of the state variables.

In this case the contraction table entry is said to a£ply_ to the
character group in the buffer.

DOTSYS TT then puts out one or more braille signs, as appropriate,
and shifts the characters just translated out of the buffer. As the
characters leave the buffer, they may change some state variables in
accordance with the transition table.

In addition to the contraction table, transition table, and
decision table, there are two more tables: the* aj£habe£ table and
the sign table. Conceptually, the alphabet table is part of the con
tractTSn" £abl7; it contains the braille signs used for individual
bar ters when they are not translated as part of a -ntraction
also contains indexing entries for efficient search of ^contraction
table The sign table merely sets up a correspondence between the
numbers from O^o 63 and the 64 braille signs (counting the spaced
This allows the numerical equivalent of the signs to be used in the
program for indexing and for storage in tables.

In the following sections, where- tables are described their
formats are presented as COBOL data items, which describe storage"ion in asimple, logical way. The example belowRowing a
typical COBOL (15,16) data item and its corresponding storage layout
with sample contents, is sufficient explanation for our purposes.

01 A.
09 B OCCURS 2 TIMES.

03 c PICTURE S99, USAGE COMPUTATIONAL.
03 D PICTURE XXX.

C(2) D(£)

Figure 11.
A typical COBOL data item and its corresponding
storage layout, with sample contents

16

B. Finite-State Logic

1. The State Vector

This section describes the finite-state memory in DOTSYS II. As
noted in the introduction, the finite-state memory implements braille
translation rules whose application is affected by characters preceding
the characters to be translated.

DOTSYS II remembers past information with the state vector, which
is described by the following COBOL data item:

01 STATE-VECTOR

02 STATE-VARIABLE OCCURS 10 TIMES, PICTURE X.

Thus, the state vector consists of at most ten state variables, each
one a single character.

Each state variable has value of Y or N; all are given the value
N initially. The value of each state variable is recomputed immediately
after the characters just translated are shifted left out of the
buffer. The new value of a state variable depends on its old value
and on the character or group of characters shifted out of the buffer-
that is, on the alphabet or contraction table entry just found.

2. Input Classes

Because many different characters or contractions may have the
same effect on the state vector, they are grouped into numbered
input classes. This way, the new value of each state variable depends
on its old value and on the input class of the alphabet or contraction
table entry. The input class number is one field of the table entry.

In order to be grouped into the same input class, two contractions
must also be made or not upon the same condition of the state vector--
i.e., they must be able to share a common decision table entry as well
as a common transition table entry.

Contractions in the same input class are similar enough to share
a common brief description. The descriptions of the input classes, as
currently provided, are given in the appendix, for the sake of concrete-
ness. The appendix also shows the information retained by state vari
ables. See Figure 22 for the associated logic tables.

17

3. The Transition Table

The transition table specifies the recomputation of the state
vector. It is described by this COBOL data item:

01 TRANSITION-TABLE.
02 TRANSITION TABLE COLUMN OCCURS 20 TIMES.

03 TRANSITION OCCURS 10 TIMES, PICTURE X.

The above data item describes a table which looks like Figure 12. NIC
and NSVare, respectively, the number of input classes and the number
of state variables.

STATE

VARIABLE

INPUT CLASS

(NSV)

R S

T

R

(NIC)

R

R

Figure 12. The transition table, with typical entries

Each row is associated with astate variable, and each column is
associated with an input class. Each entry, which is either R ST,
or - specifies the effect of an input class on astate variable, as
shown in Figure 13.

Transition Table Entry

Old Value of State Variable

R

N N N

New Value of State Variable N N

Fieure 13 Effect of input classes on state variables,
' as specified by transition table entries

18

N

N

rows for i „ and
v=Y v=N'

allowing the new value of u to be chosen
V J- v J-i

according to the value of v. An input class can be further subdivided
if the values of two or more other state variables are taken into
account, and the whole procedure can be performed for as many input
classes as necessary.

While the logical capability of the program is not limited, the
above procedure entails a great deal of work. In the environment of
braille translation, however, the state variables can be chosen so
that their transitions are largely or entirely independent of one

another.

In the terminology of switching theory, our finite-state logic
is essentially a realization with a reset-set-toggle flip-flop memory
of a sequential machine.

C. The Contraction Table

1. Introduction

The largest table in DOTSYS II, the contraction table,contains
the 189 English braille contractions, plus many additional entries
to implement some rules and indicate exceptions to others. Discussed
in this section are: the format of contraction table entries, the
table search algorithm, and the ordering of table entries.

2. Contraction Table Entry Format

This is the COBOL data item describing the contraction table:

01 CONTRACTION-TABLE

02 TABLE-ENTRY

03 STRING.

OCCURS 300 TIMES.

04 TABLE-CHAR

03 RIGHT-CONTEXT

03 INPUT-CLASS

03 SHIFT

03 SIGNS.

04 SIGN

OCCURS 9 TIMES, PICTURE X.
PICTURE X.
PICTURE S99, USAGE COMPUTATIONAL.
PICTURE S99, USAGE COMPUTATIONAL.

OCCURS 4 TIMES, PICTURE S99,
USAGE COMPUTATIONAL.

Thus, each contraction table entry has five fields, containing:
all but the first character of a character string to be represented,
a right-context character, the input class number, the number oi

21

characters to shift out of the buffer, and the numerical codes of the
braille signs to be put out. In Figure 15 is an example of the con
traction table entry for EA.

STRING RIGHT-CONTEXT INPUT-CLASS SHIFT SIGNS

A$ L 4 2 2 99 99 99

Figure 15. Contraction table entry for EA

The absence of the E, the dollar sign in the string, and the
numbers in the SIGNS field will be explained in the paragraphs
be low.

a. The STRING Field

The first field of the contraction table entry, the STRING field,
comprises nine characters, and represents a character string recog
nized as a whole when encountered in the buffer. The first character
in the string is encoded by the position of the entry in the table,
and is not included in the STRING field. The STRING field consists
of the second through last characters in the character string; if
there are fewer than nine, they are followed by a dollar sign, and
enough trailing blanks to make a total of nine characters. For
example, the STRING field for the character string THROUGH looks like
this: HROUGH$bb. The entry is placed in the table in a section where
all strings are prefixed by T. The limits of that section are identi
fied in the alphabet table.

b. The RIGHT-CONTEXT Field

The second field of the contraction table entry, the RIGHT-
CONTEXT field, contains one character: either a blank or a character
such as L or P. Currently, an L indicates that a letter must be found
in the buffer immediately following the character group to which the
entry would apply, in order for this contraction table entry to be
applicable. A P indicates that any character other than a letter
must be found there, instead. A blank indicates the absence of a
right-context condition.

For example, ^the contraction table entry shown in Figure 15 is a
match for the buffer contents shown in Figure 16a but not in Figure 16b,

22

IEAVE HO, MTEY SEA IN SHIJS

(a) (b)

Figure 16. Buffer contents which (a) do, (b) do not
match the contraction table entry for EA

shown in Figure 15

c. The INPUT-CLASS Field

The third field of the contraction table entry, the INPUT-CLASS
field, is a positive integer which assigns this entry to a group of
entries having the same effect on the state vector (as specified in
the transition table) and the same requirements on the state vector
for the contraction to be made (as specified in the decision table).

As indicated in Figure 15, the EA entry is in input class 4. All
entries in this class have an effect on the state vector specified in

column 4 of the transition table, and none will be used unless the

state variables satisfy conditions given in the lower part of some
column of the decision table whose upper part has Y opposite this

input class.

d. The SHIFT Field

The fourth field of the contraction table entry, the SHIFT field,
is a positive integer giving the number of characters to be shifted
out of the buffer after this entry is applied. This field might
appear redundant, because the length of the character string just
translated is implied in the STRING field. But it is sometimes con
venient to translate and shift out of the buffer only a part of the
character string to which the entry applies.

The best example of a situation in which it is convenient to
translate and shift out only a part of the character string is in the
implementation of the rule which eliminates spaces between the braille
signs for A, AND, FOR, OF, THE, and WITH. Assume that there are two
contraction table entries as show in Figure 17, and suppose that the
buffer contents are as shown in Figure 18.

23

(a)

(b)

STRING

ND FOR $

OR THE $

SIGNS

47 99 99 99

63 99 99 99

Figure 17. Contraction table entries for AND FOR and FOR THE

|AND FOR TJHE OTHERS,

Figure 18. Buffer contents for text example

bJbHS =-»^S=K S.-JL-5J2- -

e. The SIGNS Field

FOR THE "pTJiERS,
Figure 19. Buffer contents after shifting

Now FOR THE will be matched and .translated as H (FOR coded bv 63^
and the buffer contents shifted by four again.' 'Note that ^ L^'
will bJeUStobeen PUk °Ut "^ n° **™**£ space SimUariy, thfrYwill be no space between!: (FOR) and/ (THE).

The fifth and last field of the contraction table
SIGNS field, contains four numbe entry, the

rs representing the braille transla-

TaAsrj.^ot the chara"« s"^s -"*•• ."^:i™:;
The correspondence between the numbers and braille signs is

given m the sign table. If the translation is fewer than W braill.
signs, the extra numbers are specified as 99. braille

3- The Ordering of the Contraction Table

The position of an entry in the contraction table depends on thP
character string to which it applies, according to three rules:

, , a* . An entry is Placed with other entries applying tocharacter strings with the same first character. For examjlf the
entries for EA, ED, EN, EAR, EVER, etc. are together in 12 section

24

of the table. Thus, the contraction table is a sequence of sections;
each section is associated with the character which begins all of the
character strings to which the entries in that section apply.

The order of the sections is the same as the order, in the alpha
bet table, of the associated characters.

b. Within a section, entries are grouped together if they apply
to character strings having the same second character (i.e., having
STRING fields with the same first character). For example, the ordering
ALSO, AND, ALWAYS would violate this rule, since the ALSO and ALWAYS
must not be separated by an entry applying to a character string whose
second letter is not L. In this example, the entry for AND could
occur either before or after the entries for storage beginning with AL.

c. Among entries applying to strings having the same first two
characters, if there are situations in which both contraction table
entries would apply, place the preferred entry first in the table. For
example, the entry for EAR must precede the entry for EA, since, when
they both apply, as in NEAR, the EAR contraction is used.

Once the three rules cited above have been satisfied, any remain
ing questions of order may be dictated arbitrarily, but they are best
settled with an eye to the efficiency of the contraction table search.
For best results, entries and groups of entries with higher frequency
of use ought to be placed ahead of others less frequently used, when
ever possible under the restrictions stated above.

4, The Contraction Table Searcl

In order to translate the characters in the buffer, DOTSYS II
attempts to find a matching contraction table entry in the following
manner. First, the subscript (or index) of the first entry in the
section associated with the first character in the buffer is obtained
from the EXTENT field of its alphabet table entry.

DOTSYS II compares the second through last characters in the
buffer with the characters in the STRING field of entries in the
proper section of the table, stopping when a contraction is made, or
when the end of the section or the end of a succession of entries
matching the second character of the buffer is reached. If no con
traction in the table is made-that is, if the contraction table
search fails-then the first character in the Duffer is translated
by itself as specified in its entry in the alphabet table.

25

Comparison of the STRING field of an entry with the characters
after the first in the buffer is character by character, stopping
(unsuccessfully) on a mismatch or (successfully) when the dollar sign
in the string field is found or all nine characters match.

Even after a successful comparison, of course, the right-context
character and decision table must still be checked; if they do not
permit this entry to be used, the search continues to the next entry.

D. The Alphabet Table

The alphabet table is used in two ways: first, to identify each
character which moves into the initial position in the buffer;
second, to provide the last-resort translation of that character as a
single braille sign, if it is not part of a group which can be con
tracted at that time.

It is described by this COBOL data item:

01 ALPHABET.
02 ALPHABETIC-ENTRY OCCURS 64 TIMES.

03 SYMBOL PICTURE X.
03 CHAR-CLASS PICTURE X99, USAGE COMPUTATIONAL.
03 SINGLE-SIGN PICTURE S99, USAGE COMPUTATIONAL.
03 EXTENT PICTURE S999, USAGE COMPUTATIONAL.

The SYMBOL field contains the characters; the CHAR-CLASS field,
its input class; the SINGLE SIGN field, the number representing its
braille sign" and the EXTENT field,an index into the contraction
table. Aside from the EXTENT field, the alphabet table entry Jig
have been incorporated into the contraction table (with a SHIFT field
of 1).

Here is an example to show what the EXTENT field is and how it
is used to initiate the contraction table search. Suppose the buffer
contains the word TIME, as shown in Figure 20.

THE IPIE FOR Ap

Figure 20. TIME in the buffer

DOTSYS II searches the alphabet table, starting at the top, for
an entry whose SYMBOL field is equal to the character occupying the
first position in the buffer-T. This brings it to the point in the

26

I

I

alphabet table illustrated in Figure 21, which shows the entry for T
and also the next one, which happens to be for A.

SYMBOL CHAR-CLASS SINGLE-SIGN EXTENT

T

A

1

1

30

1

20

43

Figure 21. Two successive entries in the alphabet table

The EXTENT field contains the subscript of the first of the
entries in the contraction table which apply to character strings
beginning with that character.

The EXTENT field for T is 20; this means that the twentieth
entry in the contraction table is the first one applying to strings
beginning with T. Furthermore, since the order of the sections in the
contraction table is the same as the order of the associated characters
in the alphabet table, the last contraction table entry for T is the
one just before the first entry for A, since A appears next in the
alphabet table. Thus, the contraction table search starts at the
twentieth entry and ends, at worst, at the forty-second.

Every character which can appear in the input text must have an
alphabet table entry, even those which begin no contractions. The
EXTENT field of an entry for a character which begins no contractions
should be the number of entries in the contraction table plus one.

Note that, because DOTSYS II must search the alphabet table for
practically every character in the input text, it is more efficient
to arrange the alphabet table so that the entries for the more frequent-
ly occurring characters are closer to the top of the table.

E. The Right-Context Table

The right-context table lists the possible characters that may
be found in°the RIGHT-CONTEXT field of a contraction table entry, and
the associated input classes of characters which must occur immediately
following the character group in the buffer if the entry is to apply.

m:It is described by the following COBOL data ite

27

01 RIGHT-CONTEXT-TABLE.

02 RIGHT-CONTEXT-TABLE-ENTRY OCCURS 2 TIMES, DEPENDING ON NNT.

03 NON-TERMINAL PICTURE X.

03 RIGHT-CONTEXT-CLASSES.

04 RIGHT-CONTEXT-CLASS OCCURS 4 TIMES, PICTURE S99,
USAGE COMPUTATIONAL.

Thus, each right-context table entry pairs a right-context charac
ter symbol, or non-terminal, in the NON-TERMINAL field, with four input
class numbers; characters in those input classes are to be acceptable
as right context.

The name NON-TERMINAL, borrowed from the theory of context-free
languages, is used instead of RIGHT-CONTEXT-CHARACTER in order to
distinguish the symbol representing a class of characters from the
actual character in the buffer which may or may not be acceptable as
right context.

Where fewer input class numbers are required than the number of
RIGHT-CONTEXT-CLASS fields, input class numbers may be repeated to fill
the entry.

F. Output

1. Intermediate Output

The output section of DOTSYS II is not really part of the trans
lation program, but it is necessary in order to put the braille output
in the desired printed, punched, and tactile forms. The translation
section produces as intermediate output a sequence of two-digit numbers
taken from the SIGN-field of contraction table entries or the SINGLE-
SIGN field of alphabet table entries. Numbers from 0 to 63 represent
braille signs according to a correspondence defined below. Number 64
is not used, but numbers from 65 through 99 (possibly not all used)
represent format controls for tabulation, line-skipping, paragraphing,
and the like. The output section turns numbers from 0 through 63 into
braille signs in whatever form is requested (and implemented) with
the help of the sign table, and acts upon numbers from 65 through 99
according to various built-in capabilities such as inserting spaces or
skipping to the beginning of the next line or page.

Automatic line breaking is presently also a function of the output
section, which begins a new line after the last space occurring normally
before the end of the current line. Hyphenation, however, would have to
be added to the translation section, because of the existence of braille
rules concerning the use of contractions on either side of a hyphenated
line break.

28

'

2- Kinds of Output Implemented

The kinds of output presently implemented are:

(1) printed proof output, showing each braille
sign (drawn with periods), up to three proof
characters to aid in identifying the charac
ter, and the number of the sign.

If proof output is requested, DOTSYS II prints displays showing
the current contents of the right-context table, decision table, and
transition table before the braille output begins. Figure 22 below
shows these displays and some braille proof output.

(2) braille output; braille signs are printed
backwards and read from right to left, so that
when the dots push through the paper (if there
is a resilient backing) the resulting embossed
dots on the other side read normally.

(3) punched output; the two-digit numbers for
braille signs are punched on Hollerith cards,
two columns per number, giving a maximum of
forty signs per card.

29

C
O
L
U
M
N

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
i
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

i
n
p
u
t

c
l
a
s
s

D
E
C
I
S
I
O
N

T
A
B
L
E

0
1

0
2

0
3

0
4

0
5

0
6

0
7

O
R

0
1
y
-
-
_
_
_
_
_

0
2
-
-
Y
-
-
-
-
-

0
3
G
-
-
-
-
-
-
-

0
4

-
Y

-
-

-
-

-

0
5
G
-
-
-
-
-
-
-

0
6
-
-
-
Y
-
-
-
-

0
7
-
-
-
Y
-
-
-
-

0
3
-
-
-
-
Y
-
-
-

0
9
-
-
-
-
-
Y
-
-

1
0
-
-
-
-
-
-
Y
-

1
1
-
-
-
-
-
-
-

y

1
?

G
-
-
-
-
-
-
-

1
3

G
-
-
-
-
-
-
-

1
4

G
-
-
-
-
-
-
-

1
5
-
-
N
G
-
-
-
-

S
T

A
T

E
-V

A
R

IA
B

L
E

0
1

S
T

A
T

E
-V

A
R

IA
B

L
E

0
2

S
T

A
T

F
-V

A
R

IA
B

L
E

0
3

S
T

A
T

E
-V

A
F

I
A

B
L

E
0

4

S
T

A
T

E
-V

A
R

IA
B

L
E

0
5

Y

N
N

N
-

-

N
-

-

-
Y

N

-

N
Y

S
T
A
T
E

V
A
P
I
A
H
L
E

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

I
N
P
U
T

C
L
A
S
S

T
P
A
N
S
I
T
I
O
N

T
A
B
L
E

0
1

0
2

0
3

0
4

0
5

C
I

R
S

-
-

0
2

s
R

-
-

-

0
3

-
R

-
-

-

0
4

R
S

-
-

-

0
5

-
-

T
-

-

0
6

R
s

-
-

-

0
7

R
R

-
-

-

0
8

R
R

-
-

-

0
9

R
R

-
-

-

1
0

R
R

-
S

-

1
1

R
R

-
R

-

1
2

-
R

-
-

S

1
3

-
R

-
-

R

1
4

R
R

-
-

-

1
5

R
S

_
_

_

R
IG

H
T

C
O

N
T

E
X

T
T

A
B

L
E

N
O

N
-T

E
R

M
IN

A
L

IN
P

U
T

C
L

A
S

S
E

S

P
1

4
0

3
0

2
0

2

L
0

1
1

3
1

3
1

3

F
ig

u
re

22
.

L
og

ic
ta

b
le

d
is

p
la

y
s

an
d

p
ro

o
f

o
u

tp
u

t

3
0

^
^
.

D
A

T
E

:
«

F
1

_
J
F

_
J
H

-
V

t
N

E
Z

U
E

L
A

-.
K

(I
C

K
F

F
E

L
L

E
R

2
5

0
1

3
0

1
7

1
3

0
0

0
0

6
0

1
1

1
0

4
0

2
6

1
1

4
0

2
6

0
3

0
0

3
2

3
9

3
4

1
7

5
3

3
7

1
7

0
7

0
1

0
0

3
2

2
3

2
1

0
9

0
5

1
7

1
1

1
7

0
7

0
7

5
9

0
0

0
0

P
O

S
T

P
O

N
E

D
?

-
V

E
N

E
Z

U
E

L
A

N
V

I
S

I
T

;
C

O
F

P
U

S
S

!
*

1
5

2
1

1
2

1
5

2
1

2
9
4
3

0
0

3
H
0
0

3
2

3
9

3
4

1
7

5
3

3
7

1
7

0
7

0
1

2
9

0
0

3
9

1
0

1
4

1
0

3
0

0
0

0
6

0
9

0
0

5
5

0
0

1
5

2
1

1
4

1
4

1
0

6
0

0
0

0
0

Y
I

0
L

=
E

.
39

10
21

07
41

17
50

00
00

00
00

00
0

0
00

00
00

00
00

00
0

0
00

00
00

00
00

0
0

00
0

0
«0

00
00

0
0

00
00

00
00

0
0

0
0

00
0

0

-,
T

H
E

-
N

r
W

-
Y

O
R

K
G

O
V

E
R

N
O

R
,

O
N

A
-
L

A
T

I
N

00
on

32
*

6
00

32
29

17
58

0
0

32
*1

21
23

05
0

0
27

21
39

5
9

2
9

21
23

0
2

0
0

21
29

0
0

01
0

0
32

0
7

01
JO

2
0

0
0

0
«

0
0

0
0

0
0

-,
A

M
FK

I
r

A
N

I
O

U
R

FO
R

-
P

R
E

S
I
D

E
N

T
-
N

I
X

O
N

,
S

D
H

E
S?

01
13

59
10

09
01

29
00

30
51

23
00

63
00

32
15

23
17

14
10

25
34

30
00

32
29

10
45

21
29

02
00

14
25

0
0

1
9

17
00

0
0

A
i.

B
L

E
U

n
T

H
'>

'"
f

r.
V

I
T

"
.)

!
2

7
23

17
'.

3
>

n
•.

?
0

0
3H

2
3

1
7

2
7

2
3

1
7

3
0

52
)0

[J
T

H
E

"
E

0
'J

E
bT

"
T

H
E

-
V

C
H

E
i

U
E

L
A

N
2

4
6

0
0

'3
1

7
3

1
3

7
1

7
1

2
0

0
5

2
4

6
0

0
3

2
3

9
(4

1
7

5
3

3
7

1
7

0
7

0
1

2
9

i,
n

V
(:

»
N

=
I

:
I

21
)9

5
9

2
9

4
f

1
0

,
H

f
s

P
0

K
F

IN
-

T
K

IN
I

i)
A

D
,

rf
H

H
fc

4
6

6
H

,j
01

)
0

0
i>

19
17

0
0

14
!r

21
0

5
17

0
0

ZO
0

0
32

30
23

2
0

10
2

5
01

2
5

02
0

0
4

)
0

0
1

9
1

7
0

0
5

6
19

0
0

I
I

r-
N

',
f

H
-i

!
IJ

I.
r

H
r'

l
II

1
?

u
o

n
i

.
i

>
r,

3
w

0
7

'.
i

o
o

;
I

l
,

v
l

T
1

rf
'R

.
f.

iv
-

a
i

a
:,

30
U

!
0

2
>

9
17

c
o

3
)

<
5

0
0

t
i

0
0

32
0

9
?H

01
0

i
31

l<
5

0
0

0
).

']
0

0
0

0
0

0
0

0
0

0
0

0
0

0

-
.
R

C
I
L

K
I
F

E
I
L

E
R

T
0

1
0

N
E

w
S

H
E

N
H

h
M

0
V

E
O

TO
V

I
S

I
T

,?
i

,
J]

09
05

1?
11

17
07

07
59

00
30

21
07

25
00

29
17

6H
14

1
'

!4
JO

19
17

00
19

21
15

43
0

0
11

39
10

14
10

30
00

00

.,
v

FN
E

I
U

E
L

A
?

5
S

5
T

IN
TH

L
F

U
T

U
R

E
.
"

32
)9

*3
4

17
53

37
17

07
01

00
35

16
14

00
16

30
00

20
00

46
00

11
37

30
37

2)
17

50
52

00
00

00
00

00
00

00
00

00
00

00
F

ig
ur

e
22

.
L

og
ic

ta
b

le
di

sp
la

ys
,-in

d
pr

oo
f

ou
tp

ut
(c

on
ti

nu
rd

)

3. The Numerical Codes for the Braille Signs

The correspondence between numbers from 0 through 63 and the
sixty-four braille signs, recorded in the sign table, is based on the
standard numbering of the six dots in a braille cell, as shown:

1 • • 4

2 • • 5

3 • • 6

Figure 23. The standard numbering of the dots in a braille cell

Given a braille sign having the dots numbered k , k , ..., then
ki 1 ko 1 12

the corresponding number is 2 L + 2 2 + ... For example, the braille

sign for A, which uses only dot 1, is given the number 21"1 = 2° =1.
The braille blank is given the number zero by this system.

Another way of thinking of this numerical encoding of braille signs
is through a correspondence between dots and the digit positions of a
binary number. If six bits are numbered 1 to 6 from right to left, the
number representing a given braille sign is the binary number with ones
in the bit positions corresponding to the dots in the sign. For example,
the braille sign for B has dots in positions 1 and 2. Thus, it is repre
sented by the binary number 000011, or, in decimal, 3.

1

4. The Sign Table

The COBOL data item below describes the sign table

01 SIGN-TABLE.

02 SIGN-TABLE-ENTRY OCCURS 64 TIMES.

03 DOTS-1-4 PICTURE XX.

03 DOTS-2-5 PICTURE XX.

03 DOTS-3-6 PICTURE XX.

03 PROOF-CHARACTERS PICTURE XXX.

The first three fields of a sign table entry are the three rows
of the braille cell represented by that entry. Spaces and periods
are placed in those fields to make a picture of the character.

32

I

I

I

I

I

I

The PROOF-CHARACTERS field contains a combination of up to three
characters which uniquely identify the sign. DOTSYS II prints them,
in addition to the braille sign, when in proof mode, to help a pro
grammer test the output.

The correspondence between braille signs and numbers is set up
simply by the order of the entries; the first (representing the
braille sign for A) is given the number 1, and so on. Thus, the num
ber of a sign is a subscript which can be used by the output program

to obtain its picture and proof characters. (The blank sign is
placed in the table as the 64th entry because there can be no zerot!'
entry.)

For example:

in Figure 24.

the sign table entries for "A" and THE are shown

(a)

(b)

DOTS-1-4 DOTS-2-5 DOTS-3-6 PROOF-CHARACTERS

• A

• • • • T 1 H
i

E

Figure 24. Sign table entries for (a) A and (b) THE

. J. K. Milieu

JKM:ces

33

APPENDIX

STATE VARIABLES AND INPUT CLASSES

State Variable 1 after the start of a number

2 after the start of a word

3 grade 1 translation

4 in a quotation

5 in italicized text

Input Class 1 contractions always used in grade 2

2 digits

3 most punctuation

4 contractions used after the start of a word

5 $G (grade switch)

6 contractions used only at the start of a word

7 isolated full-word contractions

8 $P" (start paragraph in quotation)

9 $P (start paragraph in italics)

10 " (left quote)

11 " (right quote)

12 (begin italics)

13 (last word of italics)

14 (space)

15 A to J occurring in a number

35

REFERENCES

1 J. P. Cleave, 'Braille Transcription,' Mechanical Translation,
Vol.'2., No.'3 (1955), pp. 50-54.

2 , 'The Mechanical Transcription-of Braille,'
T^T^Tr^aTResolution of Linguistic Problems, A. Booth,
rr^r^dwood, J. P. Cleave, Academic Press, N.Y., 1958, pp.97-
109.

3 AS. Schack and R. T. Mertz, Braille Translation System for
the IBM 704, M&A-10, (1961), International Business Machines
Corp., N.Y.

4. A. Nemeth, Digital Enciphering of English into Braille,
Wayne State University, (1963) (Project No. 433).

5 FINAL REPORT to the Vocational Rehabilitation Administration,
5' Decent of Health, Education and Welfare by the Sensory

Aids Evaluation and Development Center, M. 1. 1.

6.

7.

10.

11.

12.

D. E. Knuth, Thj^Art^i^oijijHiJ,^^ Addison-Wesley
(1968), pp. 190^1967~

P. M. Lewis and R. E. Stearns, 'Syntax-Directed Transduction,'
J. ACM. (15) No. 3, (July 1968).

N. Chomsky and M. P. Shutzenberger, 'The ^h^%^YSylte^s
r „t-OVf Free Languages,' Computer Programming and Formal Sjystems,

Co., Amsterdam (1963), pp. 118-161.

S. Ginsburg, Th^^JiajAema^i^^
McGraw-Hill (1966).

M. L. Minsky, C^m^^K^^
Prentice-Hall (1967).

C. Salton, A,atc^c^^
McGraw-HiirT1968).

P J H King, 'Conversion of Decision Tables to Computer
Program by tule Mask Techniques,' Comm. ACM (9) No. 11
(Nov. 1966).

3fa

13.

14.

15.

16.

K Thompson, 'Regular Expression Search Algorithm,' Comm. ACM
(11) _6 p. 419.

English Braille, American Edition. American Printing House for
the Blind, Louisville, Ky. (1966).

COBOL General Information, F28-8053, International Business
Machines Corp., N.Y.

United States Standard COBOL, American National Standards
Institute, ANSI X 3.23 - 1968.

37

ATTACHMENT

A PAGE CE BRAILLE

The braille page reads:

Sample Run

Although the M.I.T. high-speed braille embosser
was not available on-line to DOTSYS II at the time of

writing this document, the coded punched-card output
from the text was transferred to paper tape, one of the
input media acceptable to the embosser. The tape ends
were joined to make a loop, and the loop was read by the
embosser to produce a braille version of this page for
each copy of the document.

38

I
i

II

I

I

I

I

J

I

I

I

I

I
I

I

I

lb

INTERNAL

C-01

c. w. Farr

D-06

P. R. Vance

D-07

J. H. Burrows

A. J. Roberts

D-ll

J. J. Croke

C. E. Duke

J. F. Jacobs

D-12

C. A. Zraket

D-53

F. Er.igel

D-63

R. S. Nielsen

D-73

W. Amory
N. A. Anschuetz

E. H. Bensley

J. A. Clapp

T. L. Connors

C. G. Crothers

M. T. Gattozzi

W. R. Gerhart

R. A. J. Gildea (25)
J. B. Glore

0. R. Kinney

E. L. Lafferty

Dr. J. K. Millen (25)

DISTRIBUTION LIST

D-73 (cont.)

J. Mitchell

C. M. Sheehan

J. E. Sullivan

N. B. Sutherland

L. M. Thomas

Dr. D. E. Walker

E. W. Williamson

PROJECT

G. Dalrymple, M.I.T.
M. Leonard, M.I.T.

Prof. R. W. Mann, M.I.T.

V. A. Proscia, M.I.T. (50)

EXTERNAL

H. Bassler

Colonial Penn Insurance Co.

112 South 16th Street

Philadelphia, Pennsylvania 19102

Dr. M. P. Boyles (3)
Director, Computer-Braille Project
Instructional Services Center

Atlanta Public Schools
2930 Forrest Hill Drive, S.W.
Atlanta, Georgia 30315

L. L. Clark (2)
Director, IRIS
American Foundation for the Blind
15 West 16th Street

New York, New York 10011

E. L. Glaser

Computation Center
Case Western Reserve University
University Circle
Cleveland, Ohio 44106

41

DISTRIBUTION LIST (cont.)

EXTERNAL (cont.)

Dr. C. E. Hallenbeck

Department of Psychology
University of Kansas
Lawrence, Kansas 66044

R. Haynes
American Printing House for

the Blind

1839 Frankfort Avenue

Louisville, Kentucky 40206

Dr. K. R. Ingham

Room 20-B-207

Massachusetts Institute

of Technology
77 Massachusetts Avenue
Cambridge, Massachusetts

02139

R. E. LaGrone

IBM Corporation
Federal Systems Division
Department PC4, Room 2P25
18100 Frederick Pike
Gaithersburg, Maryland 20760

Dr. L. Leffler
Applied Mathematics Division
Argonne National Laboratories
9700 South Cass Avenue
Argonne, Illinois 60440

R. J. McNaughton
RCA Aerospece Systems Division
Burlington, Massachusetts

01801

Prof. A. Nemeth

Mathematics Department

University of Detroit
4001 W. McNichols
Detroit, Michigan 48821

Dr. B. Perella

Department of Defense
Fort George Meade, Maryland

A. Schack

Schack Associates

127 West 12th Street

New York, New York 10011

J. Siems'

American Printing House for the

Blind

1839 Frankfort Avenue

Louisville, Kentucky 40206

Dr. E. J. Waterhouse

Director

Perkins School for the Blind
175 North Beacon Street

Watertown, Massachusetts 02172

V. Zickle ' .
American Printing House for the

Blind

1839 Frankfort Avenue

Louisville, Kentucky 40206

FOREIGN

P. W. F. Coleman

4 George Street
Eastleight, Hants

S05 4 BU, United Kingdom.

C. W. Garland

Royal National Institute for
the Blind

224-6 Great Portland Street

London, W. 1, England '

42

'^iMMit:i/:'^.:"^.;^yf;M:

DISTRIBUTION LIST (cone.)

FOREIGN

R. House

Research Group for Quantitative
Linguistics

Sodermalrastorg 8, Stockholm
Sweden

Dr. G. Lamprecht
Wistfalische Wilhelms Universitat

44 Munster, Germany

Roxeler Strasse 64

B. Lindqvist
De Blindas Forening

Utvechlingsavdelningen
Gotlandsgatan 46
116 65 Stockholm

Sweden

J. Lindstrom

Handikappinstitutet

Pa Iach, 161 03 Bromma 3
Sweden

V. Mokleby
Husby OFF Skole for Blinde
Hovseterveien 3

Oslo 7

Norway

W. Sorke
Deutsche Blindenstudienanstalt

355 Marburg/Lahn
Am Schlag 8
West Germany

J. Vinding
Statens Institut for Blinde

og Svagsynede
Rymarksvej 1
2900 Hellerup

Denmark

Prof. H. Werner

Institut fur Numerische und

Instrumenttlle Mathematik

Universitat Munster

Schlossplatz 5
44 Munster, West Germany

43

